Home Just In Google Cloud Unveils Vertex AI, Making ML More Accessible

Google Cloud Unveils Vertex AI, Making ML More Accessible


At Google I/O 2021, Google Cloud has announced the general availability of Vertex AI – a managed unified machine learning (ML) platform that allows companies to accelerate deployment and maintenance of artificial intelligence (AI) platforms. Vertex AI requires nearly 80% fewer lines of code to train a model versus competitive platforms1, enabling data scientists and ML engineers across all levels of expertise the ability to implement Machine Learning Operations (MLOps) to efficiently build and manage ML projects throughout the entire development lifecycle.

Vertex AI unifies existing offerings into a single experience for experimentation, versioning, and deploying ML/AI models into production environments. One can seamlessly manage and deploy models through a new workflow (UI, API, and SDKs) for AI Platform Training, AI Platform Prediction, AutoML Tables, AutoML Vision, AutoML Video Intelligence, AutoML Natural Language, Explainable AI, and Data Labeling. Each of these services are now features of Vertex AI, the evolution of AI Platform (unified).

Today, data scientists grapple with the challenge of manually piecing together ML point solutions, creating a lag time in model development and experimentation, resulting in very few models making it into production. To tackle these challenges, Vertex AI brings together the Google Cloud services for building ML under one unified UI and API, to simplify the process of building, training, and deploying machine learning models at scale. In this single environment, customers can move models from experimentation to production faster, more efficiently discover patterns and anomalies, make better predictions and decisions, and generally be more agile in the face of shifting market dynamics.

Through decades of innovation and strategic investment in AI at Google, the company has learned important lessons on how to build, deploy, and maintain ML models in production. Those insights and engineering have been baked into the foundation and design of Vertex AI, and will be continuously enriched by the new innovation coming out of Google Research. Now, for the first time, with Vertex AI, data science and ML engineering teams can:

  • Access the AI toolkit used internally to power Google that includes computer vision, language, conversation and structured data, continuously enhanced by Google Research.
  • Deploy more, useful AI applications, faster with new MLOps features like Vertex Vizier, which increases the rate of experimentation, the fully managed Vertex Feature Store to help practitioners serve, share, and reuse ML features, and Vertex Experiments to accelerate the deployment of models into production with faster model selection.
  • Manage models with confidence by removing the complexity of self-service model maintenance and repeatability with MLOps tools like Vertex Continuous Monitoring and Vertex Pipelines to streamline the end-to-end ML workflow.

“We had two guiding lights while building Vertex AI: get data scientists and engineers out of the orchestration weeds, and create a industry-wide shift that would make everyone get serious about moving AI out of pilot purgatory and into full-scale production,” said Andrew Moore, Vice President and General Manager of Cloud AI and Industry Solutions at Google Cloud. “We are very proud of what we came up with in this platform, as it enables serious deployments for a new generation of AI that will empower data scientists and engineers to do fulfilling and creative work.”

The Vertex AI platform is generally available.

Recommended for You

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Close Read More

See Ads